

TianQin – Space-borne gravitational wave detector

SPACECRAFT NAVIGATION AND MISSION SIMULATION

December 9, 2015 - Prepared by Viktor T. Toth

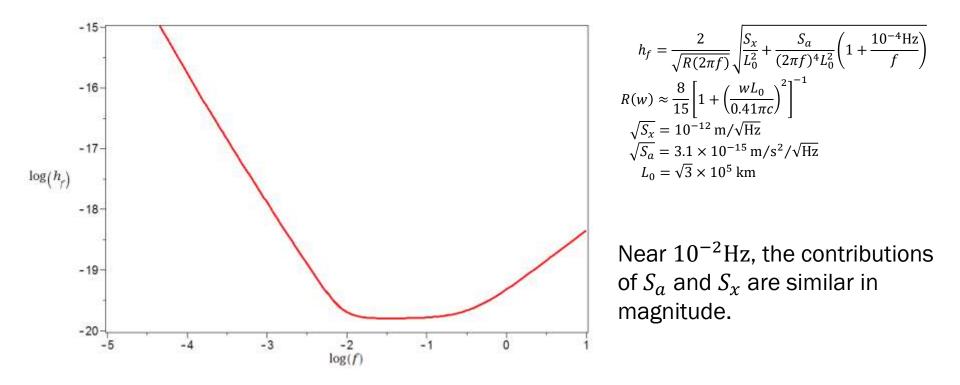
A PERSPECTIVE

- Precision navigation
- End-to-end mission simulation

A NEW TYPE OF MISSION

- Three (or more) spacecraft form a single science instrument
- Test mass orbits are, in effect, the science observable
- GW signal is extremely faint: $h \sim \Delta L/L \sim 2(GM/c^2r)(GM/c^2R) \lesssim 10^{-20}$

THE CHALLENGE

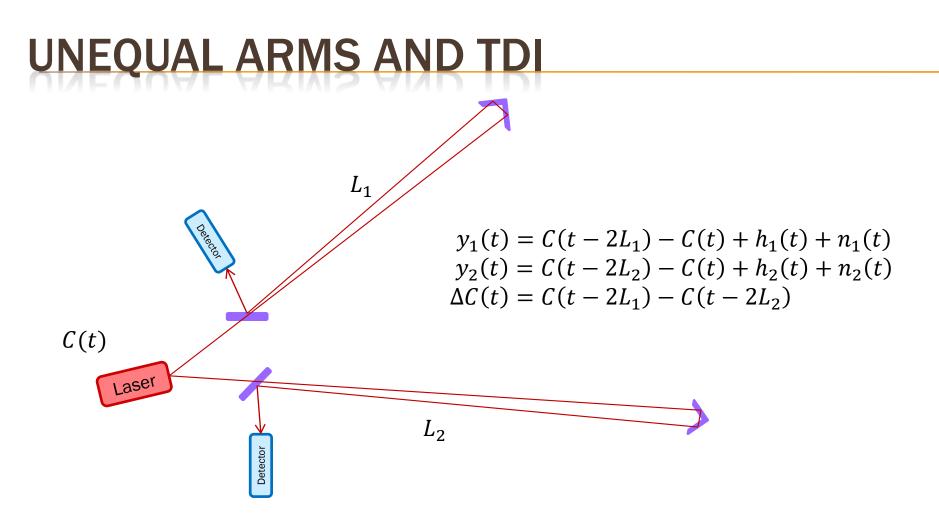

- Precision-navigate a constellation
- Achieve sufficient navigational accuracy
- Disentangle gravitational wave contributions from other (gravitational and nongravitational) effects
- Difficult to test in a terrestrial (1g) laboratory environment
- LISA Pathfinder tests key technologies but not TDI
- Modeling and simulation are essential

REQUIREMENTS

- Acceleration accuracy
- Positional accuracy
- Unequal arms vs. laser noise

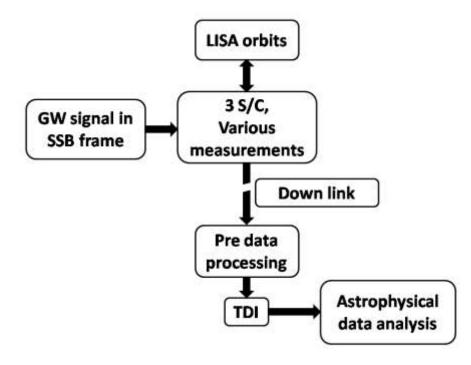
SENSITIVITY GOAL

• Sensitivity goal at SNR = 1 dB



ACCELERATION ACCURACY

- Non-gravitational noise compensation at the level of $10^{-12}\,\,m/s^2/\sqrt{Hz}$
- Test mass residual acceleration of $10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}}$
- For comparison, the unmodeled (anomalous) acceleration of the Pioneer 10 and 11 spacecraft was ${\sim}10^{-9}\,{\rm m/s^2}$


POSITIONAL ACCURACY

- Test mass positional accuracy of $1 \text{ pm}/\sqrt{\text{Hz}}$
- For comparison, GRACE Follow-On has an accuracy requirement of a few nm

- Raw data referred to unsynchronized clocks with individual drift and jitter
- Requires precise knowledge of arm lengths and longitudinal velocities

LISA(-LIKE) DATA PROCESSING

Yan Wang, On inter-satellite laser ranging, clock synchronization and gravitational wave data analysis, PhD thesis (2014)

• But where does the orbital data come from?

The 3rd workshop on TlanQin Science Mission TianQin Research Center, School of Physics and Astronomy, Sun Yat-sen University December 9, 2015 - © Viktor T. Toth – https://www.vttoth.com/

NAVIGATION – ORBITAL RECONSTRUCTION

- "Live" navigation vs. reconstruction of orbits
- Kalman-filtering is used to refine orbital estimates of flying spacecraft
- Nonlinear least squares estimator can be used for orbital reconstruction

On the following slides, I shall use "navigation" to describe both live navigation and orbital reconstruction.

TWO NAVIGATIONAL PROBLEMS

- Navigating the spacecraft with the requisite positional accuracy requires precise knowledge of small nongravitational forces
- Navigating the test masses requires very accurate knowledge of the gravitational field
- If test masses are not 3D drag-free, they are not following geodesics
- Absolute positions may not be important; relative distances and velocities essential for TDI

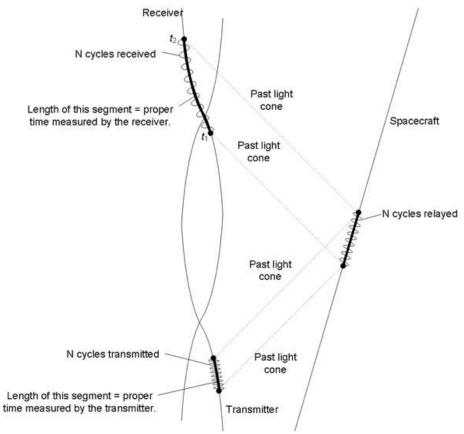
ZONAL HARMONICS OF THE EARTH

 Zonal harmonics represent a significant potential noise source in the critical frequency range

$$U_E = \frac{GM_E}{r} \left\{ 1 - \sum_{l=2}^{\infty} \left[\left(\frac{R_E}{r}\right)^l \sum_{k=0}^l P_{lk}(\cos\theta) (C_{lk}\cos k\phi + S_{lk}\sin k\phi) \right] \right\}$$

RELATIVISTIC CONTRIBUTIONS

•
$$\frac{d^{2}\mathbf{r}}{dt^{2}} = \frac{\nabla U_{i}}{|\mathbf{r}_{i} - \mathbf{r}|} [A_{i}(\mathbf{r}_{i} - \mathbf{r}) + \mathbf{B}_{i}]$$
•
$$A_{i} = 1 - \frac{1}{c^{2}} \left\{ 2(\beta + \gamma) \sum_{j} \frac{\mu_{j}}{|\mathbf{r}_{j} - \mathbf{r}|} + \gamma v^{2} + (1 + \gamma)\mathbf{v} \cdot \mathbf{v}_{i} - \frac{3}{2} \left[\frac{(\mathbf{r} - \mathbf{r}_{i}) \cdot \mathbf{v}_{i}}{|\mathbf{r}_{i} - \mathbf{r}|} \right]^{2} \right\}$$
•
$$\mathbf{B}_{i} = \frac{1}{c^{2}} \left\{ (\mathbf{r} - \mathbf{r}_{i}) \cdot [(2 + 2\gamma)\mathbf{v} - (1 + 2\gamma)\mathbf{v}_{i}] \right\} (\mathbf{v} - \mathbf{v}_{i})$$


T. D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation, John Wiley & Sons (2005)

SMALL FORCES

- Drag (collisions with dust, upper atmosphere, etc.)
- Solar radiation pressure $(4.6 \,\mu N/m^2)$
- Maneuvers
- Outgassing from thrusters
- Outgassing from other equipment
- Outgassing from surface coating materials (~ nN/m², Schläppi et al., 2012)
- Radio and laser beam recoil force (~ 3.3 nN/W)
- Thermal radiation recoil force

NAVIGATION

- Radio-metric or optical
- Doppler or range

SIGNAL PROPAGATION

- Gravitational (Shapiro) delay
- Charged particles (solar wind)
- Ionosphere
- Wet troposphere

SIGNAL RECEPTION

- Earth precession and nutation
- Earth tides
- Continental drift

EXISTING KNOWLEDGE

- The navigational problem is well-understood
 - VLBI
 - GPS
 - Precision deep space navigation (Pioneer)

• Emphasis must be on contributions in the sensitive frequency range (mHz)

THE SIMULATION CHALLENGE

- Orbital simulation is (relatively) easy
 - We treat the S/C as a point test particle subject to a range of forces, and we simulate signal propagation

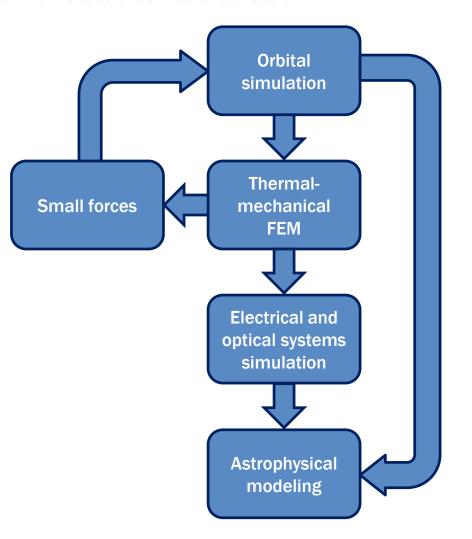
• What else do we wish to simulate for a successful mission?

FAILURE ANALYSIS

- Imagine the mission fails. What are some possible causes?
 - Test masses are not traveling along predictable orbits. Specifically, they are perturbed by unmodeled forces in the critical frequency range
 - Unmodeled temperature fluctuations affect measurements either by changing the optical path length or by impacting optical equipment (filters)

WHAT MUST BE MODELED?

- Orbits (obviously)
- Mechanical and thermal behavior
 - Especially the mechanical and thermal behavior of spacecraft components along the light path
- Optical and electrical behavior of the laser interferometer system


THE COMPUTATIONAL CHALLENGE

- Simultaneous simulation of interdependent systems can increase computational requirements by orders of magnitude
- Supercomputers are great to have but they are no excuse for bad algorithms that can overwhelm even the best hardware

A SIMULATION STRATEGY

- Simulation tasks can be performed independently and iteratively:
 - 1. orbital simulation of the S/C as a whole can provide input data to compute thermal exposure to sunlight, thermal radiation from the Earth, and other sources of heat;
 - 2. Finite element model of the S/C can provide detailed estimates with high temperature resolution of the spacecraft's thermal behavior;
 - 3. Thermal estimate can be used to refine the orbital estimate by incorporating very small thermal recoil forces;
 - 4. The thermal estimate can be used as input data for the optical and electrical simulation.

ITERATIVE SIMULATION

The 3rd workshop on TlanQin Science Mission TianQin Research Center, School of Physics and Astronomy, Sun Yat-sen University December 9, 2015 - © Viktor T. Toth – https://www.vttoth.com/

SOFTWARE DEVELOPMENT AND TESTING

- Project is both straightforward and challenging
- Uncommon accuracy (beyond IEEE 64-bit)
- No test cases
- Critical to successful mission design
- Strict formal methodology essential; should include validation (perhaps borrowing formal validation processes from avionics or medical device software)

• Questions?