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Abstract:

Contrary to a wide-spread opinion, the nonlinearities of
Einstein's field equation do not significantly contribute
to the perihelion advance of planetary orbits. This is
demonstrated by a straightforward calculation, which yields
the usual result from the linearized field equation.
Roughly two-third of the effect is shown to be due to space
curvature. Some general remarks on nonlinearities of

classical and quantized field theories are added.



1. Introduction

Many publications on general relativity contain the statement
that the perihelion advance of planetary orbits is partly caused by
nonlinearities of Einstein's field equation. Usually the effect is
calculated indeed from Schwarzschild's exact solution of the full
nonlinear equation. The well-known result for the precession angle

per revolution,
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(with a = major semi-axis, e = eccentricity, m = Schwarzschild's
mass parameter, G = Newton's gravitational constant), however, is
linear in G. This fact suggests the idea that perihelion advance is
essentially a first order effect with respect to G or, in other
words, with respect to the gravitational potential. Eq. (1) should
then be expected to follow from the linearized form of Einstein's
equation as well. As shown below, this is easily confirmed by a

straightforward calculation.

The same conclusion has already been reached by other authors.
(Compare, e.g., the footnotes on p. 296 of the first and second
edition of Synge's textbook [1].) Nevertheless, in a lot of discuss-
ions the present author got the impression that most people still
believe in the importance of nonlinearities for perihelion advance.
Therefore the present calculation has been published for the sake of
agitation, in spite of its somewhat trivial character., Perhaps just
its simplicity will be especially convincing. The gquestion of whether
or not the observed perihelion advances test more than just the 1li-
near approximation of Einstein's theory is perhaps important enough

to Jjustify even a somewhat repetitious discussion.



As in the case of gravitational light deflection, the curvature
of three-space produces also a significant part (two~third) of the
perihelion advance. This is easily shown by a slight modification of
the calculation mentioned before. Accordingly, the perihelion adv-
ance of Mercury represents up to now the most sensitive test for

space curvature.

Some general considerations about nonlinearities in classical
and quantum field theory are appended. As in electrodynamics, the
problem of whether or not the gravitaticonal field has to be quantized
should be decidable, at least in principle, by suitably accurate

observations.

2. Perihelion Advance from Weak Field Approximation

In harmonic coordinates the linearized field equation of Fin-

stein for a static mass distribution has the solution
= n A% (2)
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(See, e.g., Fock [2] .) Here g;y and " i are the curved and flat
space-time metric, respectively, 6ik is the Kronecker symbol, and
V is Newton's gravitational potential. The gravitational field of the

sun as given by
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is more appropriately described in spherical coordinates x1 = r,

x2 = a, X0 = 4), x4 = ot. Egs. (2) and (3) then yield
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Planets if treated as test bodies move aecording to
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Since g;, is calculated in (4) up to terms of second and higher order
in m only, such terms will consequently be omitted also in the foll-
owing evaluation of Eq. (5). In this approximation, the non-vanishing

Christoffel symbols calculated from (4) are
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Inserting these IM's, Eq. (5) for i = 2 becomes
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v or2 dep.ds /
with the particular solution
s
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which just specifies the orientation of the coordinates with respect

to the orbit plane. Eq. (5) for i = 3 gives, together with (6),

br(3-)pd 0. i
With
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multiplication of (7) by %2 leads to

£&Fe)=o0 ,
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Eq. (5) for i = 4 becomes
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with b = - g,, = 1 - 2m/r. Multiplication by b/c gives, because of
b'E = b,
ft)=0 ,
i.e.,
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Finally, Eq. (5) for i = 1 will be replaced by the first inte-
gral of (5)

dx* oxH
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which together with (6) gives

(1+30)(+2447¢7) - (1-22)242 = - 1, (11)

For a discussion of perihelion advance it suffices to know the

orbit r = (i)) With T = ? (P inserted into (11), and then 4) and

t eliminated by (9) and (11), respectively, one has
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Multiplication by (1 - 2m/r)A"2 and introduction of a new radial

*)

coordinate T according to (8) yields
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By differentiation with respect to d)it follows

*)

Our radial eoordinate r is the "harmonic" one [2] , whereas the
radial coordinate which occurs in the usual form of Schwarzschild's
solutiéﬁé%orresponds to our T. The definition of perihelion obvi-
ously does not depend on whether ¥ or r is used.
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Since we are not interested in circular orbits ( ﬂ j:‘,_ the
final orbit equation is
2 .
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dg* ¥ ¥FoOOoAr T T
This equation, however, is identical with the equation which
follows without any approximations from the Schwarzschild solution
(cf., e.g.y [3], Chap. 11, Eq. (11.70)). Therefore Eq. (12) yields
the usual result (1) for the perihelion advance, but it has been de-

rived here from the linearized field equation.

3, Perihelion Advance and Space Curvature

i

According to the discussion above, besides redshift and light
deflection also the third "classical" prediction of general relativity
follows from the first approximation of the theory. Among these tests

the redshift is the least specific one, since it tests the equation

gqq=—1-—~— (13)
only, which can be justified without using the field equation (cf.,
ooy [3] , Chap. 10). Therefore it is more informative to test the
space part

= (4 *2_6\_1)5“{3 (14)

of Eq. (2), i.e., the space curvature due to gravity.

It is well-known that both correctures (13) and (14) contribute
equal amounts to the light deflection angle, i.e., space curvature
produces the famous factor 2. This factor already has been confirmed
by observation, but only with an error of about ten per cent [4] .

Since the perihelion advance of Mercury is known more accurately,



with an error of about one per cent only [4] y, 1t looks more promis-

ing to test space curvature by this effect.

For this purpose one has to estimate the contribution of (14) to
the total perihelion advance. This is easily done by calculating,
again to first order in m, planetary orbits in a metric Bik which
satisfies Egs. (13) and (3), but without space curvature, i.e.,

3"‘(3 = (S,,(p . The calculation, being a trivial modification of the
one just performed, is left to the reader. Instead of Eq. (12) one

derives the orbit equation
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the right hand side describing the relativistic corrections to New-

ton's theory being somewhat modified.

Without these corrections the orbit becomes a Kepler ellipse
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with major semi-axis a and eccentricity e. For planetary orbits e is

very small such that terms of order 82 may be neglected. Therefore

re

pA
) may be omitted in BEq. (15). The resulting equation
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obviously yields one-third of the total perihelion advance as derived

from (12),

Two-third of the relativistic perihelion advance in case e2<<'1
ig therefore due to space curvature. The observations of Mercury are

thus, up to now, the most precise test of Eq. (14).



4, Concluding Remarks

Effects due to nonlinearities of the gravitational field equ-
ation have been not yet detected, and there is little hope to ach-
ieve this because gravitation is so extremely weak. For the same
reason even the linear approximation has been tested up to now for
static fields only. The search for dynamical effects like gravitat-
ional waves has not been successful so far. Imagine for the moment,
however, observations of nonlinear effects to bhe feasible. Can one
then expect them to confirm the predictions of Einstein's classical
field equation? Even if one firmly believes in the correctness of
this equation, the question should not a priori be answered in the

affirmative,

Let us explain this by the example of the electromagnetic field
interacting with the Dirac field. The corrésponding classical field
theory is, due to the interaction, a nonlinear one like Einstein's
theory of gravitation. However, it does not correctly predict the
nonlinear effects of the field since it applies to nature only after
quantization. For instance, two crossed beams of light do not scatter
according to the classical equations, whereas quantum electrodynam-
ics predicts such scattering. In this case there is little doubt
about which prediction will be confirmed by a suitably accurate ex-

periment.

Presumably the nonlinearities of Einstein's theory too will
lead to correct predictions only after the theory has been quantized.
According to this point of view, the question of whether or not the
field of gravity has to be quantized can be decided, at least in

principle, by the observation of suitable nonlinear effects.,.
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